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A best estimator derived by Takens for estimating the dimension of a strange attractor from a discrete set of points is shown to

be sensitive to lacunarity in the fractal set.

1. Introduction

Though computing the dimension of fractal sets
has achieved widespread popularity (the literature is
vast; the three reviews mentioned in ref. [1] are by
no means exhaustive), it has proven to be surpris-
ingly difficult to characterize the accuracy and reli-
ability of these computational estimates [2,3] (“It
is not difficult to develop an algorithm that will yield
numbers that can be called dimension, but it is far
more difficult to be confident that those numbers
truly represent the dynamics of the system” [2]). It
is, perhaps, not surprising that a geometrical object
that is called a ““strange attractor” should prove to be
ill-behaved and hard to analyze. In this Letter, we
will address a particular source of systematic error,
due to “intrinsic oscillations” or “lacunarity” [4-8],
which in particular affect an otherwise very efficient
estimator of dimension derived by Takens [9].

2. Dimension algorithms

A variety of algorithms has been proposed for es-
timating the fractal dimension of a geometrical ob-
ject (such as a strange attractor) from a discrete
sample of points on the set. For an incomplete sur-
vey, see refs. [10-16]. In each case, a scaling of
something like “mass™ as a function of something
like “size” yields the dimension. In this Letter, we
will concentrate on the pointwise dimension [11]

and the correlation dimension [15], though some of
what is said applies to the other algorithms as well.

2.1. Invariant measure

As algorithms, the input is necessarily a discrete
set of points which sample the set. For the purposes
of this Letter, we will consider the limit of N—co
points. We will assume that these points fill the set
ergodically, and so allow us to define an invariant
measure u. If ois the attractor, and S = 7, then the
measure of S is defined to be the fraction of points
that are in S,

#(S)=lim MS_} .

Now N (21)

Here “#” denotes the cardinality of the set.
2.2. Pointwise dimension

To define the pointwise dimension at the point
xe o/, consider the measure of the ball %#,.(r) which
has radius r and is centered at the point x. Call that
measure B, (r) = u(4%.(r)). Empirically, we estimate
B, (r) by counting how many neighbors there are
within 7 or x;:

B.(r)= lim FoerAand e =55 (59

If we have B,.(r) ~r®, then d, is the pointwise di-
mension at x. Formally,
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d,(x) =tim 288 (2.3)

r~o0 logr

2.3. Correlation dimension

An effective and very popular algorithm was de-
veloped by Grassberger and Procaccia [15] and
Takens [16], and is based on the distances r; be-
tween the points x; and x. A correlation integral is
defined by the fraction of distances less than a fixed
distance r,

#{ryli<j<Nand ry=|x;— x|l <r}

C(N’ r) = { Lo . AL
#1'1'!'” _/{n;
(2.4)
Equivalently,
1 N
C(N,r)==Y B.(r), (2.5)
N
or
1 N
C(N, )= Y H(r—ry), (2.6)

N(N-1) ;2
i#)

where H(x), the Heaviside function, is zero if x<0

and one if x>0. In terms of the invariant measure,

we can write

C(r)y=1im C(N,r)

N—co

[ [ doaey. @)

Xy

The correlation dimension » expresses the scaling
C(r) ~r"; or more formally,

r—0 —lﬁg'r

We have used the ambiguous symbol “~ to de-
note the (equally ambiguous) phrase “tends to be
approximately proportional to”. We, in particular,
have avoided saying C(r)ocr”, since this propor-
tionality may not hold, even as r—0. Indeed, the fail-
ure of this proportionality is the essential feature of
lacunarity. We can certainly write

C(ry=o(r)r?, 2.9)

(2.8)
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which defines @(r), since v is already defined in eq.
(2.8). It is the behavior of this prefactor ®(r) which
is our concern in this Letter. We tend to think of @(r)
as a coefficient which approaches a constant as 7—0,
but all that eq. (2.8) requires is that

0 oer (2.10)

Further, since C(r) is necessarily nonzero, we also
have that @(r) is always nonzero.

In practice *', we cannot take r> 0, so we settle for
some approximation at finite R>0. One obvious
choice is

log C(R)

V(R): logR

(2.11)
This estimate does have the desirable property that
v(R) converges to the correct dimension v as R—0.
However, if @(r) is equal to a constant, then

_logC(R) log(PR*) _  log®
v(R)= logR ~ logR _V+logR

(2.12)

approaches v with logarithmic slowness as R—0.
One alternative is to take

_log C(R)—log C(R;)
V(R,R;)= ————-logRl—long , (2.13)

which does avoid the logarithmic slowness described
above, though it involves the choice of two scales, R,
and R,, both of which should tend to zero. It is more
common for estimates of dimension to be taken by
fitting a slope to a log-log plot of C(r) versus r over
some range r<R, as was originally advocated by
Grassberger and Pocaccia [15]. This again avoids
the logarithmic slowness, but there is no clear cri-
terion for finding a best fit. Unweighted least squares
is a particularly poor choice for two reasons. One, an
unweighted fit effectively assumes a uniform error in
log C(r). This is wrong because the statistics are
much poorer at small r than at large r. Two, even a
weighted fit assumes that errors in log C(r) are in-
dependent of each other. But C(r+ Ar) is equal to
C(r) plus the fraction of distances between r and
r+ Ar. Paticularly, for small Ar, the error at

#! In practice, the real limitation is finite N, but an indirect effect
of this is that we must limit r to some positive value.
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log C(r+ Ar) will be strongly correlated with the er-
ror at log C(r).

A more sophisticated idea is to use a maximum
likelihood estimator. (This idea was introduced by
Fisher [17]; a recent exposition can be found in ref.
[18].) The idea is to assume that distances r; are
distributed randomly according to a probability

P(ry<r)=C(r)=or". (2.14)

Then, calculate the likelihood of observing the par-
ticular distances r; that are seen, given this assump-
tion about their probability distribution. This
likelyhood is expressed as a function of the param-
eters v and @, the values of » and @ which maximize
the function comprise the maximume-likelihood
estimator.

This approach was applied by Takens [9] to the
correlation dimension. Assuming the form of prob-
ability distribution above, Takens derives an opti-
mal estimator

1
~ (log(r,/R)>”’

where the angle brackets {( ) denote an average over
all distances r;; which are less than R. In terms of the
correlation integral, this can be written [3]

C(R)
J§LC(ry/rldr’
We note that an identical prescription can be applied
to the pointwise dimension. Here, the estimator for
the dimension at point x is

B.(R)
o [Bx(r)/r]dr’

»(R)= (2.15)

v(R)= (2.16)

d(x,R)= (2.17)

As we will see, this is a more efficient estimator of
dimension than the straight ratio of logarithms given
in eq. (2.11), in the sense that »(R) approaches the
dimension » much more quickly as R—0. However,
it is the purpose of this Letter is to probe that for
fractal sets with lacunarity, »(R) does not converge
at all. In fact, Takens observed numerically that es-
timates of dimension for the Zaslavskii map [19]
fluctuated, depending on the choice of R. This fluc-
tuation was correctly attributed to the failure of the
assumption that @ was constant. For & constant, or
if it approaches a constant as R—0, the Takens es-
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timator behaves correctly. In fact, we will derive a
condition on the behavior of @(r) which is more
strict than eq. (2.10), and under which the Takens
estimator converges.

We are compelled nonetheless to comment that for
purposes of practical approximation, the Takens es-
timator may still be a very useful formula.

3. Convergence criterion for the Takens estimator

In this section, we derive a condition on the pre-
factor @(r) which allows the Takens estimator to
converge. First write

[BIC(r)/r1dr — JBR®(r)r*-"dr’

»(R)= (3.1)

Now, take z= —log(7/R), so r=Re~?, and r—0 be-
comes z—»0o:

D(R)R”
J& D(Re~")(Re=°)"~'(—Re~°dz)
_ @(R)
T [re " *®P(Re~7)dz’

V(R)=

(3.2)

This is an approximation to » with relative error

v(R)—v
— R

Invoking the identity [Fe~"*d=1/v, we can write

E(R)= (3.3)

[=al —Vz —Z

@(R)

ER)= (3.4)
In general, we have that the Takens estimator con-
verges iff

oo

lim | e=?[®(Re~?)/P(R)—1]dz=0. (3.5)

R—-0
0o

We first comment that for a nonlacunar fractal,
with @ constant, we have P(Re~7)=D(R), the er-
ror E(R) is zero, and the estimator is accurate. Fur-
ther, for a fractal in which @ approaches a constant,
the error vanishes as R—0.

We emphasize that this condition is not equivalent
to eq. (2.10). It is possible to devise functions @(r)
for which eq. (2.10) is satisfied, but eq. (3.5) is not.
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Such functions, we will see, arise from lacunar
fractals.

4. General lacunarity

Mandelbrot [4] introduced the term lacunarity as
a measure of the “texture” of a fractal. There is no
generally accepted definition of lacunarity, and in-
deed there has been some controversy over how it
should be measured (a brief account, offered as an
aside, can be found in ref. [20]). We follow ref. [7],
among others, in using the term to refer to the var-

I
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iability of @(r), particularly where lim,_, @(r) is
not a positive constant. In such cases, the Takens es-
timator usually fails to converge.

4.1. Periodic lacunarity

Fig. 1 shows a log-log plot of the correlation in-
tegral for the middle-thirds Cantor set. (This ex-
ample is also discussed in ref. [7].) Also plotted is
D(r)=C(r)/r*. We see that @(r) has the property

D(r)y=Dd(Lr), (4.1)
for the constant L=1/3 and for all ». We take eq.
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Fig. 1 The middle-thirds Cantor set. (a) Log-log plot of the correlation integral C(r). The overall slope is v=1log 2/log 3~ 0.63, which is
the dimension of the fractal set. (b) The periodic lacunar function @(r). Hence ®(r) = ®(r/3) for all r. (c) The Takens estimator »(R)
does not approach the correct dimension », but instead oscillates without damping as R—0. (d) A more reliable estimator is the ratio of
logarithms, log C(R)/log R. Although we point out in the text that the convergence of this estimator is usually very slow, approaching
the limit as O(1/log R); in this particular example, the coefficient of that leading term is zero.
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(4.1) as a definition for periodic lacunarity. As a
function of z= —log(r/R), we see that ®(Re™?) is
periodic with *“wavelength” log L. Further, we see
immediately from eq. (3.2) that periodic lacunarity
implies

v(R)=v(LR) . (4.2)

It follows that ¥(R) = v (L"R) for arbitrarily large n.
In particular, this means that if »(R)# v for any
R>0, then limg_, 7(R) cannot be ». Thus, we need
only show a single value of R for which v(R)# v to
prove nonconvergence of the Takens estimator.

Take R so that @(R) is minimum,; there is no dif-
ficulty in doing this since @(R) is periodic in the
sense of eq. (4.1). In particular, then,

d(Re~*)/D(R) =1, (4.3)

for all z, with strict inequality for at least a range of
values of z (unless @ is constant!). This implies that

o]

je“’z[<D(Re_z)/¢(R)— 1]1dz,

0

1s strictly greater than zero. It follows that ¥(R) # v,
and from the argument above, that limgz_ o V(R) #
v.

The Takens estimator does not converge for frac-
tals with periodic lacunarity.

4.2. Aperiodic lacunarity

Although cooked-up examples like the middle-
thirds Cantor set displays a lacunarity that is pre-
cisely periodic as r—0, a more typical fractal, such
as the Hénon attractor [21], exhibits oscillations
which are more complicated #. See fig 2. It is claimed
in ref. [7] that the amplitude of the oscillations de-
crease as r—0 for the Hénon attractor. This is ver-
ified numerically by Grassberger [20], who computes
dimension according to eq. (2.13), with R, =2¢ and
R,=¢/2. He finds that the oscillations that are ob-
served for e> 10~* do indeed damp out for € all the
way down to 2X 10~7. Turchetti and Vaienti [22]

#2 For the pointwise dimension, nearly precise periodic lacunar-
ity is more common. This periodicity is pointed out in ref. [3]
for the pointwise dimension of the Hénon attractor at the fixed
point.
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Fig. 2. The Takens estimator »(R) for the Hénon attractor. It is
expected that ¥ (R) approaches a constant as R—0.

prove that the oscillations are damped for (generic
elements of) a class of multi-scale Cantor sets.
Nonetheless, as Arneodo et al. [23], point out, these
oscillations still make estimation of dimension a more
difficult problem.

5. Edge effect

In this section, we demonstrate the usefulness of
the Takens estimator for a case in which @ is non-
constant, yet not lacunar. That is, we have
lim, o @(r) exists and is a positive constant. We take
as our example the unit interval [0, 1] with uniform
density. In this case, v is clearly one, and the cor-
relation integral is given [3] by

C(r)=2r=r*=2-n)r, (5.1)
and
D(ry=2—-r. (5.2)

We can write an explicit expression for the Takens
estimator, using the formula for »(R) in eq. (3.2).
We have
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P(R)
VR)= f g (ReT) dz
_ 2-R
T [re  (2—Re ") dz
2—R 2—R

= = ~|1—R/4. 5.3

2—RfFe~*dz 2—R/2 / (5-3)
We see that the error scales as O(R) for the Takens
estimator; this is significantly faster than the O(1/
log R) scaling that is achieved by the more “reliable”
estimator in eq. (2.11).
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